In this problem, we will derive various properties of Dirichlet Convolutions, a powerful tool in number theory. Consider two real functions \(f \) and \(g \) whose domain is the positive integers. Then their convolution is a new function:

\[
(f * g)(n) = \sum_{k \mid n} f(k)g(n/k)
\]

In other words, the convolution of \(f \) and \(g \) at \(n \) is the sum of \(f(k)g(n/k) \) over all positive divisors \(k \) of \(n \).

1. To begin to understand the Dirichlet convolution, let

\[
A(n) = \begin{cases}
1 & n = 2^k \text{ for some integer } k \\
0 & \text{otherwise}
\end{cases}
\]

\[B(n) = n\]

and find a simple formula for the convolution \((A * B)(n)\) in terms of \(n \)’s prime factorization \(2^k \cdot 3^{k_2} \cdot 5^{k_3} \cdots\). (10 pts)

2. a. Prove that Dirichlet convolutions are
 - commutative \((f * g = g * f)\), and
 - associative \((f * (g * h) = (f * g) * h)\).
 (10 pts)

b. Show that the function

\[
\epsilon(n) = \begin{cases}
1 & n = 1 \\
0 & n \neq 1
\end{cases}
\]

is the identity; that \((\epsilon * f)(n) = f(n)\), and that no other function has this property. (5 pts)

c. A function \(f^{-1} \) is an inverse to a function \(f \) if \((f * f^{-1})(n) = \epsilon(n)\). Give

- An argument that inverses exist by describing a process for computing the inverse of a given function. A full inductive definition of the inverse is not required.
- A proof that the inverse is unique.
 (10 pts)

Note that these first parts have proven that the set of these real-valued functions \(f \) on the positive integers with \(f(1) \neq 0 \) are a commutative group under Dirichlet inversion. Let this set of functions be \(U \).

3. Next we would like try inverting the function \(1(n) = 1\). Its inverse is called the Möbius function \(\mu \); that is, the function \(\mu \) such that \(\sum_{k \mid n} \mu(k)1(n/k) = \epsilon(n) \).

a. Find \(\mu(n) \) in the special cases that

- \(n = 1 \).
- \(n = p \) is prime.
- \(n = p^2 \) is the square of a prime.
- \(n = p_1p_2 \) is the product of 2 primes.
 (8 pts)

b. Use induction to find \(\mu(p_1p_2\ldots p_k) \) where \(p_1p_2\ldots p_k \) is the product of \(\ell \) distinct prime factors. Hint: try to see a pattern in your results for 1, \(p \), and \(p_1p_2 \) in the previous part. (8 pts)
c. Determine $\mu(n)$ where n’s prime factorization contains at least one repeated prime factor, then summarize your results from this and the previous part in one expression (with multiple cases) for μ. Hint: divide the factors of n into two cases: those that have repeated prime factors and those that do not. (8 pts)

d. There exists a function f such that $\sum_{k|n} f(k) = n^2$ for all positive integers n. Using what you know about Dirichlet convolutions and μ, find $f(2^43^4)$. Your answer can be a prime factorization. (6 pts)

4. Next, we would like to understand the structure of the elements of U. Consider the following subsets of U:

- U_s (s for scalar), whose elements satisfy

$$f(n) = \begin{cases} r & n = 1 \\ 0 & \text{otherwise} \end{cases}$$

for some constant r.

- U_m (m for multiplicative), whose elements satisfy $f(1) = 1$ and $f(mn) = f(m)f(n)$ for any relatively prime numbers m, n.

- U_a (a for anti-multiplicative), whose elements satisfy $f(1) = 1$ and $f(p^k) = 0$ for any prime p and integer $k \geq 1$

a. Show that these three sets of functions are pairwise disjoint (no two have common elements) except for the identity function ϵ. (2 pts)

b. Show that any function f in U with $f(1) = 1$ can be expressed as the convolution of a function in U_m and a function in U_a. Hint: Using f, construct a multiplicative function g such that $h = g^{-1} * f$ is anti-multiplicative. (10 pts)

c. Using the previous result, show that any function f in U can be expressed as $g_s * g_m * g_a$ where g_s is in U_s, g_m is in U_m, and g_a is in U_a. (3 pts)

d. Suppose the prime factorization of n is $p_1^{k_1}p_2^{k_2} \ldots p_i^{k_i}$ where each $k_i \geq 1$. Also let the exponent for 2 in n’s factorization be k. Define the function $F(n)$ such that

$$F(n) = \begin{cases} \ell(\ell - 1) + 2 & k \geq 2 \\ (\ell - 1)^2 + 2 & k = 1 \\ \ell(\ell - 1) + 1 & k = 0 \end{cases}$$

Determine a multiplicative function G in U_m and anti-multiplicative function H in U_a such that $G * H = F$. (10 pts)