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1 The Magic Square Game (24 pts)

Alice and Bob tell their friend Eve that they have a magic 3 × 3 square of
numbers with the following properties:

• Every entry is either 1 or −1

• The product of each column is 1

• The product of each row is −1.

Problem 1.1. (5 pts) Exhibit such a square or prove that none exists.

Solution 1. Consider the product of all 9 numbers. Since the product of each
row is −1 and there are three rows, the product of the whole square must be
−1. Since the product of each column is 1, the product of the whole square
must be 1. Therefore, the square doesn’t exist.

Eve refuses to believe her friends, and they refuse to show their square to Eve.
To resolve the dispute, they have the idea to play the following game.

Definition 1.1 (Magic Square Game).

1. Eve randomly generates two numbers x, y ∈ {0, 1, 2} independently and
uniformly at random. She gives x to Alice and y to Bob.

2. Without communicating, Alice and Bob each produce a triple of ±1 num-
bers (a0, a1, a2) and (b0, b1, b2).

3. Eve checks that a0a1a2 = 1, b0b1b2 = −1.

4. Eve checks that ay = bx.

Alice and Bob win if they pass both of Eve’s checks. They lose if they fail either
of them.

Problem 1.2. (6 pts) Alice, Bob, and Eve play three instances of the game.
In each instance, decide whether Alice and Bob win or lose the game. Either
show that they fail one of the checks or that they pass both.
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1. Eve asks x = 0, y = 1. Alice answers a = (1, 1, 1), while Bob answers
b = (−1,−1,−1).

2. Eve asks x = 1, y = 0. Alice answers a = (1,−1,−1), while Bob answers
b = (−1, 1,−1).

3. Eve asks x = 2, y = 2. Alice answers a = (1,−1,−1), while Bob answers
b = (1, 1,−1).

Solution 2. 1. They fail since Alice and Bob disagree: ay = 1 6= −1 = bx.

2. They fail since Bob’s row does not have a product of −1: b0b1b2 = 1.

3. They pass both conditions: Alice’s column has a product of 1, Bob’s row
has a product of −1, and we have a2 = −1 = b2.

Problem 1.3. (8 pts) Give a deterministic strategy that wins with probability
8
9 .

Solution 3. Alice uses the matrix

A =

 1 1 −1
1 1 −1
1 1 1

 ;

Box uses the matrix

B =

 1 1 −1
1 1 −1
1 1 −1

 .

When Alice is asked question x, she responds with the xth column of A. Like-
wise, when Bob is asked question y, he responds with the yth row of B. They
fail only on the question x = 2, y = 2.

Problem 1.4. (5 pts) Suppose for the sake of this problem that a square of
numbers  m00 m01 m02

m10 m11 m12

m20 m21 m22


satisfying the conditions of problem 1.1 does exist (regardless of your answer
to problem 1.1), and that Alice and Bob have access to this square. Show how
they can use this square to make a winning strategy in Eve’s game.

Solution 4. (Note: If you pointed out that the premise was false, you received
full credit.) Alice should respond with a column of the magic square a =
(m0x,m1x,m2x) and Bob should respond with a row of the magic square b =
(my0,my1,my2). Then we’ll have ay = myx = bx and the product of Alice’s
answer is 1 while the product of Bob’s answer is −1.
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Eve is happy because she thinks that if they play this game many times and
Alice and Bob always win, then they must have the square. Alice and Bob are
happy because they only have to reveal part of their square at a time. In order
to avoid letting Eve learn the square, they can change which square they use
each time they play the game. In section 3, you’ll see that in a classical theory
of physics, Eve’s intuition is correct. In section 2, you’ll see that with quantum
mechanics, Alice and Bob can fool Eve.
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2 A Quantum Strategy for the Magic Square
Game (49 pts)

Now we’ll show that if we allow Alice and Bob to take advantage of quantum
mechanical phenomena, they have a winning strategy for the Magic Square
game. First, we’ll need some properties of the Pauli group.

2.1 The Pauli Group

Definition 2.1. The Pauli group on one qubit (which we’ll now denote by P1)
is a multiplicative structure consisting of the four Pauli operators I,X, Y, Z to-
gether with multiplicative constants 1,−1, i,−i. Explicitly, the sixten elements
of the Pauli group are

P1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ} (1)

We say that elements A and B commute if AB = BA. We say they anti-
commute if AB = −BA.

The Pauli group obeys the following relations:

• The Pauli group is closed under multiplication, i.e. every product of two
Pauli operators is a Pauli operator times a constant.

• Multiplication is associative. That is, (AB)C = A(BC) for any A,B,C ∈
P1. We’ll write ABC without ambiguity.

• I is the identity element. In other words, if A is any element of P1, then
IA = AI = A.

• X2 = Y 2 = Z2 = I.

• XY Z = −iI.

• The multiplicative constants ±1,±i act like they do in the complex num-
bers, i.e. i2 = −1 and (−1)2 = 1.

• The multiplicative constants commute with everything. (More formally,
we should say that ±I and ±iI commute with everything.)

Problem 2.1. (9 pts) Prove that X, Y , and Z are pairwise anti-commuting.
That is, for every pair A,B ∈ {X,Y, Z} with A 6= B, we have AB = −BA.

Solution 5. Start from XY Z = −iI. First, multiply on the left first by
X and then by Y . This results in the equation Z = −iY X. Starting
again from XY Z = −iI, multiply on the right by iZ. This results in the
equation iXY = Z. Thus we conclude iXY = −iY X; multiplying by i
yields that X and Y anticommute.
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We can use this to show more easily that Z anticommutes with X and Y :

Y Z = Y (iXY ) = iY (XY ) = −iY (Y X) = −iY 2X

= −iXY 2 = −(iXY )Y = −ZY.
(2)

In the fifth equality, we used that Y 2 = I commutes with everything.
Similarly,

XZ = X(iXY ) = iX(XY ) = −iX(Y X) = −(iXY )X = −ZX. (3)

Remark 2.2. There are four 2×2 matrices over the complex numbers that obey
the same relations as the I,X, Y, Z given here. You are not asked to find them.

Definition 2.3. The Pauli group on two qubits, denoted P2, consists of pairs
of elements from the Pauli group on one element, together with multiplicative
constants {1, i,−1,−i}. We think of the first part of the pair as being a Pauli
operator acting on the first qubit and and the second as being a Pauli operator
acting on the second qubit. We write the pair using the tensor product notation
⊗. Explicitly, every element of the Pauli group can be written like cA⊗B, where
A and B are Pauli operators and c ∈ {±1,±i}, because multiplication obeys
the following relations:

(inA)⊗ (imB) = in+m(A⊗B); (inA⊗B)(imC⊗D) = in+m(AC⊗BD). (4)

Some typical elements of P2 are X ⊗X, −iI ⊗ Z, and Y ⊗ Z. (Note that the
notation −iI ⊗ Z is well-defined by the first equation above.)

Problem 2.2. (22 pts)

a) Show that X ⊗X commutes with Z ⊗ Z.

b) Compute the product (X ⊗X)(Y ⊗Z)(Z ⊗ Y ) as a tensor of two one-qubit
Pauli operators, possibly with a multiplicative constant.

c) Of the 16 two-qubit Pauli operators of the form U ⊗ V, where U, V ∈
{I,X, Y, Z}, how many commute with X ⊗ X? How many anticommute?
Give proof for your answer.

Solution 6. a) We use the fact that X and Z anti-commute to compute

(X ⊗X)(Z ⊗ Z) = (XZ ⊗XZ) = (−ZX ⊗−ZX)

= (−1)2(ZX ⊗ ZX) = (Z ⊗ Z)(X ⊗X).
(5)

b) First, we note that XZY = −XY Z = iI by the anticommutation of Z and
Y . Next, we compute

(X ⊗X)(Y ⊗ Z)(Z ⊗ Y ) = (XY Z ⊗XZY ) = (−iI ⊗ iI)

= −i2I ⊗ I = I ⊗ I.
(6)
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c) First, notice that every one-qubit Pauli operator either commutes with X (X
and I do) or anticommute with X (Y and Z do). It follows that an operator
A⊗B commutes with X ⊗X iff either A and B both commute with X or A
and B both anticommute with X. In particular, notice that every two-qubit
Pauli operator either commutes or anticommutes with X ⊗X.

There are 22 = 4 operators with both tensor factors commuting with X
(I⊗I, I⊗X,X⊗I,X⊗X) and 22 = 4 with both tensor factors anticommuting
with X (Y ⊗ Y, Y ⊗ Z,Z ⊗ Y,Z ⊗ Z).

The other 8 operators have exactly one tensor factor commuting and one
tensor factor anticommuting. We conclude that 8 of the two qubit operators
commute with X ⊗X and 8 of them anticommute.

Problem 2.3. (13 pts) Find, with proof, a 3 × 3 square of two-qubit Pauli
operators such that:

• In each row, the three operators pairwise commute and their product is
−I ⊗ I.

• In each column, the three operators pairwise commute and their product
is I ⊗ I.

(Hint: There is such a square with the property that every single-qubit operator
(including I) appears at least once. You may need to include −1 coefficients.)

Solution 7. One such square is −I ⊗ Z X ⊗ I X ⊗ Z
−Z ⊗ I I ⊗X Z ⊗X
Z ⊗ Z X ⊗X Y ⊗ Y

 . (7)

The column products are

(−I ⊗ Z)(−Z ⊗ I)(Z ⊗ Z) = ZZ ⊗ ZZ = I ⊗ I

(X ⊗ I)(I ⊗X)(X ⊗X) = XX ⊗XX = I ⊗ I

(X ⊗ Z)(Z ⊗X)(Y ⊗ Y ) = I ⊗ I,

where the last equality is proved just as part 2 of problem 2.2. The row products
are

(−I ⊗ Z)(X ⊗ I)(X ⊗ Z) = −XX ⊗ ZZ = −I ⊗ I

(−Z ⊗ I)(I ⊗X)(Z ⊗X) = −ZZ ⊗XX = −I ⊗ I

(Z ⊗ Z)(X ⊗X)(Y ⊗ Y ) = ZXY ⊗ ZXY = (−i)2I ⊗ I = −I ⊗ I.

The commutation relations can be checked with the observations from the last
part of the previous problem.

Another such square is X ⊗X Y ⊗ Z Z ⊗ Y
Y ⊗ Y Z ⊗X X ⊗ Z
Z ⊗ Z X ⊗ Y Y ⊗X

 . (8)
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Problem 2.4. (5 pts) Why doesn’t your proof from Problem 1.1 apply to the
square you found in Problem 2.3?

Solution 8. Because the nine operators do not pairwise commute, multiplying
them by rows and multiplying them by columns need not give the same answer.

Theorem 2.4. If Alice and Bob have access to quantum-mechanical devices,
they can use the magic square found in Problem 2.3 to win the Magic Square
Game with certainty.

(A treatment of this theorem can be found at https://pdfs.semanticscholar.
org/33bf/805817648a88f06707dde3e627bfdd74945a.pdf)
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3 A Bell Inequality (27 pts)

First, we need to formalize the notion of a game. Let X = Y = {0, 1, 2} and let

A = B = {(+1,+1,+1), (+1,+1,−1), (+1,−1,+1),

(+1,−1,−1), (−1,+1,+1), (−1,+1,−1), (−1,−1,+1), (−1,−1,−1)}. (9)

We’ll think of X and Y as sets of questions by Eve and A and B as the set of
valid answers by Alice and Bob.

Definition 3.1. A strategy for Alice and Bob is a function p : A×B ×X × Y → [0, 1]
such that for each fixed x, y,

∑
ab p(a, b‖x, y) = 1.

If Eve asks question x to Alice and question y to Bob, then the probability
that Alice produces answer a while Bob produces answer b is p(a, b‖x, y). (The
symbol ‖ should be read as “given” or “conditioned on”.) Let V : A×B×X ×
Y → {0, 1} be the valuation for the game, i.e. the function that tells whether
Alice and Bob win the game. That is,

V (a, b, x, y) =

{
1, if ay = bx, a0a1a2 = 1, and b0b1b2 = −1

0, otherwise
(10)

Problem 3.1. (12 pts) Show that the probability that Alice and Bob win the
game is given by

ω(p) :=
1

9

∑
a∈A,b∈B
x∈X,y∈Y

p(a, b‖x, y)V (a, b, x, y). (11)

(Remember that Eve picks x and y independently and uniformly at random.)

Solution 9. Suppose Eve asks fixed questions x and y to Alice and Bob. Then
the probability that they win is the probability that they give answers a and b
such that V (a, b, x, y) = 1. In other words, their win probability is

ω(p | xy) =
∑
a,b:

V (a,b,x,y)=1

p(a, b‖x, y). (12)

We can rewrite this as

ω(p | xy) =
∑
a,b:

V (a,b,x,y)=1

p(a, b‖x, y) +
∑
a,b:

V (a,b,x,y)=0

0, (13)

which is then equal to

ω(p | xy) =
∑
a,b

p(a, b‖x, y)V (a, b, x, y). (14)

Since each pair (x, y) is asked with equal probability, we have that ω(p) is the
average of the ω(p | x, y). This recovers equation (5).
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Definition 3.2. A strategy is local if it decomposes as a product of one strategy
for Alice and one strategy for Bob. Explicitly, p is local if there exist pA :
A×X → [0, 1] and pB : B × Y → [0, 1] such that

p(a, b‖x, y) = pA(a, x) · pB(b, y). (15)

A strategy is classical if it is a convex combination of local strategies. Explic-
itly, p is classical if there exist local strategies p1, . . . , pn and nonnegative real
numbers c1 . . . cn such that

∑n
i=1 ci = 1 and such that for all a, b, x, y,

p(a, b‖x, y) =

n∑
i=1

cipi(a, b‖x, y). (16)

Intuitively, we say that a strategy is classical if Alice and Bob can implement
it by making use of classically correlated1 random variables. For example, they
might both look at the weather reports for Pasadena and choose to make their
first bits equal to 0 if it’s sunny, or make them equal to 1 if it’s extra sunny.

Problem 3.2. (15 pts) Prove that no classical strategy achieves a win proba-
bility strictly greater than 8

9 . In other words, assuming that p is classical, prove
the following Bell inequality: ω(p) ≤ 8

9 , where ω is as defined in equation (5).

Solution 10. Any deterministic strategy is of the following form: Alice has a
matrix A which she pulls a row from and Bob has a matrix B which he pulls
a column from. The consistency condition ay = bx forces that if Alice and Bob
always win, then A = B. But then this matrix cannot satisfy all of the row
product and column product conditions, as we proved in problem 1.1, so there
must be some x and y such that Alice and Bob lose. Thus Alice and Bob win
with probability at most 8

9 .
Next, note that any local strategy is of the following form: with some prob-

abilities q1, . . . , qk summing to 1, Alice plays the corresponding deterministic
strategy A1, . . . , Ak, and with some probabilites s1, . . . , sl summing to 1, Bob
plays the corresponding deterministic strategy B1, . . . , Bl. These probabilites
are independent between Alice and Bob, so for 1 ≤ i ≤ k, 1 ≤ j ≤ l, we see that
with probability qisj , Alice and Bob play the deterministic strategy (Ai, Bj).
But by the above paragraph, in any such strategy, Alice and Bob win with prob-
ability at most 8

9 as x and y vary, so the local strategy wins with probability at
most 8

9 as well.
Now we will make use of convexity to bound the probability of a general

classical strategy. Let p be a general classical strategy. Then p =
∑

cipi where

1Here, classically correlated means something like “obeying a näıve interpretation of
physics widely regarded as an accurate model of the real world before the discovery of quan-
tum mechanics in the 1930s.” For more precise definitions and theorems, see Bell’s seminal
paper.
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the pi are local strategies. Then we have

ω(p) =
1

9

∑
a∈A,b∈B
x∈X,y∈Y

p(a, b‖x, y)V (a, b, x, y)

=
1

9

∑
a∈A,b∈B
x∈X,y∈Y

n∑
i=1

cipi(a, b‖x, y)V (a, b, x, y)

=

n∑
i=1

ci

1

9

∑
a∈A,b∈B
x∈X,y∈Y

pi(a, b‖x, y)V (a, b, x, y)


=

n∑
i=1

ciω(pi)

≤ 8

9

n∑
i=1

ci =
8

9
.
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