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1 Introduction

Solution 1. There are lots of possibilities. Any configuration which splits the square into n
triangles of equal area, where n is an even positive integer, is correct. One possible answer (for
n = 10 triangles) is which easily generalizes to any even n.

Figure 1: The square is split into n = 10 triangles of equal area. A similar configuration works for
any even n.

Solution 2. Take the solution for some n. Each triangle has area % Scale it vertically so that

each triangle has area %ﬁ Then we are left with a rectangle with width 1 and height 7. Finally

add two more triangles, each of area n%rz, to the top “missing” rectangle of width 1 and height

%H' See Figure
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Figure 2: Figure for Solution [2| Start with a configuration with n = 5 triangles (not to scale since
this is impossible), and construct a configuration with n = 7 triangles.

Solution 3. If (1) is not true, then consider that the minimal odd integer n’ where it is possible
to split a square into n’ triangles of equal area. Write n’ = 2m + 1. Any odd integer 2m’ + 1 where
m’ > m is able to be split into 2m’ + 1 triangles of equal area by using the statement of Problem
m’ —m times. Hence the only positive odd integers n it might be not possible to split a square into
n triangles of equal area are all less than n’, so there are a finitely many number of such positive
odd integers, so (2) is true.

2 The case n =3

Solution 4. We use Euler’s formula V — E' + F = 2. If an n-gon is split in to k triangles, then
the number of vertices is V > n as we must have the vertices of the n-gon plus any added internal
vertices, the number of edges is 2k + 1 which we can show by induction , and the number of faces



is K+ 1 as we need the k triangles plus 1 for the outside face. Plugging in these values gives
V=FE—-F+2=k+2>n from which the result follows.

Alternatively, proceed by induction on n. If n = 3 then we have a triangle. Hence it can not be
split in to fewer than 1 triangles, so Kk > 1 = n — 2. Suppose that for m < n an m-gon being
split in to k triangles implies & > m — 2. Consider an (n 4 1)-gon. To minimize k the first edge
should connect two vertices. This splits the (n + 1)-gon in to an m-gon and an (n —m + 2)-gon.
These require an additional m — 2 and n — m edges to triangulate respectively by the induction
hypothesis. Hence the total number of edges needed is at least 1+ (m —2) 4+ (n —m) =n—1 as
desired.

Solution 5. Let the square be ABCD. Suppose by way of contradiction that there exists such a
split.

e Following the hint, first suppose a triangle has a vertex P in the interior of the square. In
order for this to form a triangle, WLOG the triangle has to be PAB. But then the square is
split into at least four triangles, contradiction.

e Now suppose the triangles only have vertices on the sides and vertices of ABCD. Suppose
there are two vertices on the sides of ABCD. Let (Q be a vertex on the side AB, and let R
be the second vertex on a side of ABCD. If R is on CD, then QACR and QBDR are both
4-gons, which means the square must be split into at least four triangles by Problem [ If
R is on an adjacent side, WLOG BC', then QRCDA is a 5-gon. By Problem {4| the 5-gon
must be split into at least 3 triangles, so the square must be split into at least 4 triangles. If
R is on AB, then @ is connected to a vertex other than A and R is connected to a vertex
other than B. Each creates a 4-gon, which means the square must be split into at least four
triangles by Problem 4l Thus no matter what, we arrive at a contradiction.

e Thus (@ is the only vertex on a side of ABC'D. So QCD must be a triangle. This implies that
ABCD is split into AAQC, AABQ, and ABQD. Then because Area(AQC) = Area(BQ@D),
@ must be the midpoint of AB. But then Area(ABQ) = 2Area(AQC), which is a contradic-

tion.

3 The 2-adics

Solution 6. Write n = 227:;)1 where ged(a,b) = 1, where a,b are both odd and where m,n are
nonnegative integers. Then —1 = va(n) = v2(2™a) —v2(2"0) =m —nson=m+1 = n= g

for odd integers a, b with ged(a,b) = 1.

Solution 7. For any integers z,y write x = 2™a,y = 2"b where a,b are odd integers. Remark
va(zy) = m+n = va(x) + va(y), va(x) = m = vo(—x) and that if ve(z) # va(y) < m # n,
va(x 4+ y) = v2(2™a + 2"b) = min(m, n) = min(ve(x), v2(y)). Now we use the definition of My.

(a
(b
(c

Mg(acy) — 9—va(zy) — 9—va2(@)—v2(y) — 9—v2(w)9—v2(y) — MQ(CL‘)MQ(y)

(
)
) My(z) = 2702(0) = 2702(-2) = DNy(—z).

) If My () # Ma(y) = 27°2(0) 2 27220) — wy(z) # vy(y), then vg(z+y) = min(va(z), va(y)) =
—vg(z+y) = max(—va(z), —va(y)), so Ma(z+y) = 27v2(@+y) = gmax(—va(z),—v2(y) = max(2-v2(®) 2-v2)) =
max(Mp(z), Ma(y)).



Solution 8. Let z = a/b and y = b/a for integers a,b where ged(a,b) = 1. If My(x) > 1, then
27v2(%) > 1, 50 wy(x) < 0, s0 b is even and a is odd. Thus Ms(y) < 1. If y is an integer, then since
b is even and a is odd, b/a is even.

4 Sperner’s Lemma

Solution 9. Let K7 be the number of dots inside the square. Note that every complete triangle has
one dot inside it, since it has exactly one rg-edge. Moreover, if a triangle has one dot inside it, then
it is complete, since the only way for a triangle to have one dot inside it is for it to have one rg-edge
and the other vertex of the triangle to be blue. Hence, every non complete triangle has either 0 or
2 dots inside it. Thus K1 — C7 = 0- # triangles with 0 dots inside + # triangles with 2 dots inside,
so K1 — () is even.

The number of dots outside the square is Cs, since each dot outside the triangle is created due to
a rg-edge on the boundary. Note that K1 = C5 + 2 - # of interior rg-edges, so Cy — K is even.
Thus —((Co — K1) + (—C1 + K1)) = C1 — Oy is also even.

5 Monsky’s Theorem

Solution 10. Considering the z component, S; NSy = S; N S3 = (). Considering the y component,
S2N S = 0. Let (z,y) be an arbitrary point. If (z,y) ¢ S1, then Ma(z) > 1 and Ms(y) > 1. We
must have either Ma(x) > May(y) or Ma(y) < Ma(x), which implies (x,y) € Sy or (z,y) € Ss.

Solution 11. We use Problem [

(a) Using ) that My(x) = Mo(—x) yields Ma(—x1) = Ma(z1) < 1, Ma(—y1) = Ma(y1) <1 =
(_$17 _yl) € Sl'

(b) By ), First we have Ms(x; + x2) = max(Ma(z1), Ma(x2)) = Ma(z2) > 1. Addition-
ally, Ma(xy + x2) = Ma(x2) > 1, Ma(xy + x2) = Ma(x2) > Ma(y2), and Ma(yr + y2) =
max(Ma(y1), Ma(y2)), so My(z1+x2) > Ma(y1+y2), Ma(x1+x2) > 1. Thus (z14+22,y1+12) €
Ss.

Now note max(Ma(y1), M2(y3)) = Ma(y3) as Ma(y3) > 1 > Ma(y1). Then Ma(y: + y3) =
max(Ma(y1), Ma(y3)) = Ma(ys) > 1, Ma(yr + y3) = Ma(y3) > Ma(x3) and Ma(yz) > 1 >

Ms(x1). Hence My (y1+ys) > max(Ma(x1), Ma(z3)) = Ma(x1+x3). Hence (x1+x3,y14+ys3) € Ss
as desired.

Solution 12. The area of AABC' is equal to the area of the triangle with vertices (0,0), B— A, and
C—A. By Problem[10} B—A € S and C— A € S5. Suppose B— A = (z2,y2) and C — A = (x3,y3).
Then by the lemma, the area of the triangle is [®5532|. We know Ma(xa) > Ma(y2) and
Ms(ys) > Ma(x3), so Ma(ways) > Ma(vzys). By Problem [7, Ma(AABC) = Ma(3)Ma(ways —
z3y2) = Ma(3)Ma(z2ys) = 2Ma(x2)Ma(ys) > 2 > 1.

Solution 13. Without loss of generality, let the vertices be A = (0,0), B = (1,0),C = (1,1),D =
(0,1). Consider a triangulation 7" of ABC'D, and place the vertices of T" in to S1, S2, S3. We observe
that on edge AB we have M(y) = 0, on the edge BC we have Ms(x) = 1, on the edge C'D we
have Ms(y) = 1, and on the edge between DA we have Msy(x) = 0. Therefore edges between points
in S7 and points in Sy on the boundary of ABCD can only occur on edge AB (on edges BC' and
DA no points are in S and on C'D no points are in S7). Furthermore, no point in AB is in Ss.
Since A € S; and B € S5 there are an odd number of such edges. Hence by Sperner’s lemma, the



number of complete triangles with respect to Si,.52, 53 is odd and hence such a complete triangle
exists. By problem 12, this triangle has area K with Ms(K) > 1. However, since ABC'D was split
in m triangles of equal area we have mK = 1. Hence Ma(mK) = My(m)Ms(K) = 1 which implies
Ms(m) < 1 and thus m is even.
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