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1 Introduction

Solution 1. There are lots of possibilities. Any configuration which splits the square into n
triangles of equal area, where n is an even positive integer, is correct. One possible answer (for
n = 10 triangles) is which easily generalizes to any even n.

Figure 1: The square is split into n = 10 triangles of equal area. A similar configuration works for
any even n.

Solution 2. Take the solution for some n. Each triangle has area 1
n . Scale it vertically so that

each triangle has area 1
n+2 . Then we are left with a rectangle with width 1 and height n

n+2 . Finally

add two more triangles, each of area 1
n+2 , to the top “missing” rectangle of width 1 and height

2
n+2 . See Figure 2.

scale add ∆s

Figure 2: Figure for Solution 2. Start with a configuration with n = 5 triangles (not to scale since
this is impossible), and construct a configuration with n = 7 triangles.

Solution 3. If (1) is not true, then consider that the minimal odd integer n′ where it is possible
to split a square into n′ triangles of equal area. Write n′ = 2m+ 1. Any odd integer 2m′+ 1 where
m′ > m is able to be split into 2m′+ 1 triangles of equal area by using the statement of Problem 2
m′−m times. Hence the only positive odd integers n it might be not possible to split a square into
n triangles of equal area are all less than n′, so there are a finitely many number of such positive
odd integers, so (2) is true.

2 The case n = 3

Solution 4. We use Euler’s formula V − E + F = 2. If an n-gon is split in to k triangles, then
the number of vertices is V ≥ n as we must have the vertices of the n-gon plus any added internal
vertices, the number of edges is 2k + 1 which we can show by induction , and the number of faces
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is k + 1 as we need the k triangles plus 1 for the outside face. Plugging in these values gives
V = E − F + 2 = k + 2 ≥ n from which the result follows.

Alternatively, proceed by induction on n. If n = 3 then we have a triangle. Hence it can not be
split in to fewer than 1 triangles, so k ≥ 1 = n − 2. Suppose that for m ≤ n an m-gon being
split in to k triangles implies k ≥ m − 2. Consider an (n + 1)-gon. To minimize k the first edge
should connect two vertices. This splits the (n + 1)-gon in to an m-gon and an (n −m + 2)-gon.
These require an additional m − 2 and n −m edges to triangulate respectively by the induction
hypothesis. Hence the total number of edges needed is at least 1 + (m − 2) + (n −m) = n − 1 as
desired.

Solution 5. Let the square be ABCD. Suppose by way of contradiction that there exists such a
split.

• Following the hint, first suppose a triangle has a vertex P in the interior of the square. In
order for this to form a triangle, WLOG the triangle has to be PAB. But then the square is
split into at least four triangles, contradiction.

• Now suppose the triangles only have vertices on the sides and vertices of ABCD. Suppose
there are two vertices on the sides of ABCD. Let Q be a vertex on the side AB, and let R
be the second vertex on a side of ABCD. If R is on CD, then QACR and QBDR are both
4-gons, which means the square must be split into at least four triangles by Problem 4. If
R is on an adjacent side, WLOG BC, then QRCDA is a 5-gon. By Problem 4, the 5-gon
must be split into at least 3 triangles, so the square must be split into at least 4 triangles. If
R is on AB, then Q is connected to a vertex other than A and R is connected to a vertex
other than B. Each creates a 4-gon, which means the square must be split into at least four
triangles by Problem 4. Thus no matter what, we arrive at a contradiction.

• Thus Q is the only vertex on a side of ABCD. So QCD must be a triangle. This implies that
ABCD is split into ∆AQC, ∆ABQ, and ∆BQD. Then because Area(AQC) = Area(BQD),
Q must be the midpoint of AB. But then Area(ABQ) = 2Area(AQC), which is a contradic-
tion.

3 The 2-adics

Solution 6. Write n = 2ma
2nb where gcd(a, b) = 1, where a, b are both odd and where m,n are

nonnegative integers. Then −1 = v2(n) = v2(2
ma) − v2(2

nb) = m − n so n = m + 1 =⇒ n = a
2b

for odd integers a, b with gcd(a, b) = 1.

Solution 7. For any integers x, y write x = 2ma, y = 2nb where a, b are odd integers. Remark
v2(xy) = m + n = v2(x) + v2(y), v2(x) = m = v2(−x) and that if v2(x) 6= v2(y) ⇐⇒ m 6= n,
v2(x + y) = v2(2

ma + 2nb) = min(m,n) = min(v2(x), v2(y)). Now we use the definition of M2.

(a) M2(xy) = 2−v2(xy) = 2−v2(x)−v2(y) = 2−v2(x)2−v2(y) = M2(x)M2(y).

(b) M2(x) = 2−v2(x) = 2−v2(−x) = M2(−x).

(c) If M2(x) 6= M2(y) =⇒ 2−v2(x) 6= 2−v2(y) =⇒ v2(x) 6= v2(y), then v2(x+y) = min(v2(x), v2(y)) =⇒
−v2(x+y) = max(−v2(x),−v2(y)), so M2(x+y) = 2−v2(x+y) = 2max(−v2(x),−v2(y) = max(2−v2(x), 2−v2(y)) =
max(M2(x),M2(y)).
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Solution 8. Let x = a/b and y = b/a for integers a, b where gcd(a, b) = 1. If M2(x) > 1, then
2−v2(x) > 1, so v2(x) < 0, so b is even and a is odd. Thus M2(y) < 1. If y is an integer, then since
b is even and a is odd, b/a is even.

4 Sperner’s Lemma

Solution 9. Let K1 be the number of dots inside the square. Note that every complete triangle has
one dot inside it, since it has exactly one rg-edge. Moreover, if a triangle has one dot inside it, then
it is complete, since the only way for a triangle to have one dot inside it is for it to have one rg-edge
and the other vertex of the triangle to be blue. Hence, every non complete triangle has either 0 or
2 dots inside it. Thus K1−C1 = 0 ·# triangles with 0 dots inside + # triangles with 2 dots inside,
so K1 − C1 is even.
The number of dots outside the square is C2, since each dot outside the triangle is created due to
a rg-edge on the boundary. Note that K1 = C2 + 2 ·# of interior rg-edges, so C2 −K1 is even.
Thus −((C2 −K1) + (−C1 + K1)) = C1 − C2 is also even.

5 Monsky’s Theorem

Solution 10. Considering the x component, S1 ∩S2 = S1 ∩S3 = ∅. Considering the y component,
S2 ∩ S3 = ∅. Let (x, y) be an arbitrary point. If (x, y) /∈ S1, then M2(x) ≥ 1 and M2(y) ≥ 1. We
must have either M2(x) ≥M2(y) or M2(y) < M2(x), which implies (x, y) ∈ S2 or (x, y) ∈ S3.

Solution 11. We use Problem 7.

(a) Using 7b) that M2(x) = M2(−x) yields M2(−x1) = M2(x1) < 1,M2(−y1) = M2(y1) < 1 =⇒
(−x1,−y1) ∈ S1.

(b) By 7c), First we have M2(x1 + x2) = max(M2(x1),M2(x2)) = M2(x2) ≥ 1. Addition-
ally, M2(x1 + x2) = M2(x2) ≥ 1, M2(x1 + x2) = M2(x2) ≥ M2(y2), and M2(y1 + y2) =
max(M2(y1),M2(y2)), so M2(x1+x2) ≥M2(y1+y2),M2(x1+x2) ≥ 1. Thus (x1+x2, y1+y2) ∈
S2.

Now note max(M2(y1),M2(y3)) = M2(y3) as M2(y3) ≥ 1 > M2(y1). Then M2(y1 + y3) =
max(M2(y1),M2(y3)) = M2(y3) ≥ 1, M2(y1 + y3) = M2(y3) > M2(x3) and M2(y3) ≥ 1 >
M2(x1). Hence M2(y1+y3) > max(M2(x1),M2(x3)) = M2(x1+x3). Hence (x1+x3, y1+y3) ∈ S3

as desired.

Solution 12. The area of ∆ABC is equal to the area of the triangle with vertices (0, 0), B−A, and
C−A. By Problem 10, B−A ∈ S2 and C−A ∈ S3. Suppose B−A = (x2, y2) and C−A = (x3, y3).
Then by the lemma, the area of the triangle is |x2y3−x3y2

2 |. We know M2(x2) ≥ M2(y2) and
M2(y3) > M2(x3), so M2(x2y3) > M2(x3y2). By Problem 7, M2(∆ABC) = M2(

1
2)M2(x2y3 −

x3y2) = M2(
1
2)M2(x2y3) = 2M2(x2)M2(y3) ≥ 2 > 1.

Solution 13. Without loss of generality, let the vertices be A = (0, 0), B = (1, 0), C = (1, 1), D =
(0, 1). Consider a triangulation T of ABCD, and place the vertices of T in to S1, S2, S3. We observe
that on edge AB we have M2(y) = 0, on the edge BC we have M2(x) = 1, on the edge CD we
have M2(y) = 1, and on the edge between DA we have M2(x) = 0. Therefore edges between points
in S1 and points in S2 on the boundary of ABCD can only occur on edge AB (on edges BC and
DA no points are in S2 and on CD no points are in S1). Furthermore, no point in AB is in S3.
Since A ∈ S1 and B ∈ S2 there are an odd number of such edges. Hence by Sperner’s lemma, the
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number of complete triangles with respect to S1, S2, S3 is odd and hence such a complete triangle
exists. By problem 12, this triangle has area K with M2(K) > 1. However, since ABCD was split
in m triangles of equal area we have mK = 1. Hence M2(mK) = M2(m)M2(K) = 1 which implies
M2(m) < 1 and thus m is even.

4


	Introduction
	The case n = 3
	The 2-adics
	Sperner's Lemma
	Monsky's Theorem

